Skip to main content

Posts

Showing posts from April, 2012

Featured Post

Conveyor Belt Tension Calculation: T1, T2 & Take-Up Design

In any friction-driven conveyor system, the most fundamental concept is the relationship between the Tight Side Tension (T 1 ) and the Slack Side Tension (T 2 ) . If you get this ratio wrong, your drive pulley will slip, your belt will wear out prematurely, or your take-up counterweight will be too light to maintain traction. In this guide, we will use CEMA standard calculations to determine the correct tensions and take-up weight. Table of Contents 1. The Basics: T1 vs T2 2. Euler’s Equation (The Grip Formula) 3. Worked Example: Calculating Tensions 4. Take-Up Units: Gravity vs Screw 5. Common Failure Modes Advertisement 1. The Basics: T1 vs T2 Imagine a conveyor belt running over a drive pulley. The motor pulls the belt, creating a tension differential: T 1 (Tight Side): The tension pulling the loaded belt toward the drive pulley. This is the highest tension point in the system. ...
Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Engineer's Guide to Keyless Bushings: Zero Backlash Connections

Figure 1: Keyless bushings eliminate keys and keyways, providing a zero-backlash interference fit for precision motion control. The Evolution of Shaft Connections In the world of Precision Power Transmission and Motion Control , the connection between the shaft and the hub is often the weakest link. While traditional methods like keyed shafts have served the industry for centuries, modern high-speed and high-torque applications require a superior solution. This guide explores the engineering advantages of Keyless Bushings (such as those from Fenner Drives, Ringfeder, or Tollok) and why they are rapidly replacing traditional interference fits and keyed connections in automation and robotics. Search for Keyless Locking Assemblies Advertisement The Hidden Costs of Traditional Methods 1. Keys, Keyways, and Splines The industry standard for decades, the keyway is simple but flawed. Figure 2: The "Notch Effect....