Skip to main content

Featured Post

Why Emergency Stops Break Gearboxes (Braking Torque Explained)

You sized your motor for running torque. You installed a VFD for a smooth start . But the first time someone hits the big red "Emergency Stop" button, your gearbox output shaft shears off clean. Why? Because stopping torque demand is often 10x higher than starting torque. In this guide, we will calculate the massive torque spikes caused by E-Stops and how to protect your conveyor from self-destruction. Table of Contents 1. The Physics: Inertia Hates Stopping 2. The Formula: Calculating Braking Torque 3. Why Service Factors Don't Save You 4. Solutions: Torque Limiters vs. Ramps Advertisement 1. The Physics: Inertia Hates Stopping Newton's First Law states that an object in motion wants to stay in motion. When you have a conveyor belt carrying 5 tons of rock moving at 2 m/s, it has massive Kinetic Energy . An Emergency Stop (E-Stop) forces that energy to zero in a fraction of a secon...
Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Master Beam Theory: Stress & Deflection

Reactions are the forces and/or couples acting at the supports and holding the beam in place. In some cases, the user should enter a distributed load to account for the weight of the beam.

The shear V effective on a section is the algebraic sum of all forces acting parallel to and on one side of the section:

V = Σ F
Advertisement

The bending moment is the algebraic sum of the moments due to applied loads and other applied moments to one side of the section of interest. Using the value V, the bending moment can be calculated:

M = ∫ (V · dx) + M0

Where:
x = position on the beam measured along its length
M0 = constant of integration evaluated from the boundary conditions.

A bending moment that bends a beam convex downward (tensile stress on bottom fiber) is considered positive, while convex upward (compressive on bottom fiber) is negative.

Coordinate system of a beam
Figure 1: Coordinate system of a beam.

Moment and shear diagrams are constructed by plotting to scale the particular entity as the ordinate for each section of the beam. Such diagrams show in continuous form the variation among the length of the beam.

Direct Stress Calculations

Magnitude of the direct stresses (tension and compressive) can be calculated from the direct stress formula:

σ = F / A

Where:
F = tensile/compressive force
A = cross-sectional shape area

At the point of maximum bending stress, the flexure formula gives the stress:

σmax = (M · c) / I

Where:
M = magnitude of the bending moment in the section
I = moment of inertia of the cross section with respect to its neutral axis
c = distance from the neutral axis to the outermost fiber

Shearing Stress

A beam carrying loads transverse to its axis will experience shearing force. The resulting shearing stress can be computed from:

Ï„ = (V · Q) / (I · t)

Where:
I = rectangular moment of inertia of the cross section of the beam
t = thickness of the section at the place where the shearing stress is to be computed
Q = First moment of the area to the outside of the axis of interest
V = shearing force

Compressive Stress and Tensile Stress in Beam
Figure 2: Compressive Stress and Tensile Stress in Beam.

Torsional Stress

When a torque is applied to a member, it tends to deform by twisting, causing a rotation of one part of the member relative to another. The value of the maximum torsion shear stress can be computed:

Ï„max = (T · c) / J

Where:
T = moment due to torque
c = distance from the neutral axis to the outermost fiber
J = polar moment of inertia

Beam Deflection

When the beam is subjected to bending, the fibers on one side elongate, while the fibers on the other side shorten. These changes in length cause the beam to deflect. The fundamental equation from which the elastic curve can be developed is:

d2y / dx2 = M / (E · I)

If loads are applied in vertical and horizontal plane, it is necessary to use the principle of superposition:

fresultant = √(fh2 + fv2)

Where fh = deflection in horizontal plane and fv = deflection in vertical plane. Using value of bending moment, slope can be calculated:

θ = ∫ [ M / (E · I) ] dx + C0
Advertisement

Axial Deformation and Twisting

The shortening/prolongation due to a direct axial tensile/compressive load is computed from:

ΔL = (F · L) / (E · A)

The relative twisting angle (θ) is computed from:

θ = (T · L) / (G · J)

Where:
L = length of the shaft over which the angle of twist is being computed
G = modulus of elasticity of the shaft material in shear

Note: All applied loads are considered to pass through the center of gravity of the cross-section. The mass of the beam is not considered; if necessary, represent it with a distributed load.

Support and Section Types

There are two very common beam arrangements: Cantilever (supported at one fixed end) and Simply Supported (supported at two points). Both are "determinate" arrangements.

Types of beam supports
Figure 3: Determinate beam support arrangements.

For standard structural shapes, geometrical data must be entered according to the type:

  • Circle: Diameter (D)
  • Rectangle: Width (b), Height (h)
  • Standard Shapes: Depth (w), Flange width (b), Web thickness (t), Flange thickness (t1), Area (A), Moment of Inertia (I), Section Modulus (S).
  • Hollow Tube: Inner diameter (d), Outer diameter (D).
Cross section of beams
Figure 4: Defining the distance to a considered cross-section.

Modulus of Elasticity

Modulus of Elasticity in Tension (E): The stiffness of the material or resistance to deformation. It is the slope of the straight-line portion of the stress-strain diagram (E = σ / ε).
Modulus of Elasticity in Shear (G): The ratio of shearing stress to shearing strain. Relationship between E, G, and Poisson’s ratio (ν):

G = E / [ 2 · (1 + ν) ]

Comments

Popular posts from this blog

Hoeken's Linkage: Kinematics and Walking Robot Design

Figure 1: Animated simulation of the Hoeken’s Linkage showing the characteristic "tear-drop" coupler curve. 🚀 New Design Guide Available Don't just read about it—build it. Check out our new tutorial: How to Design a Hoeken’s Linkage in Excel (with Free VBA Simulator) » Introduction to the Hoekens Linkage The Hoekens linkage is a specialized four-bar mechanism designed to convert rotational motion into an approximate straight-line motion. While it serves a similar purpose to other straight-line generators, its unique coupler curve—a "tear-drop" shape—makes it exceptionally useful for intermittent motion and walking machines. One of the most fascinating aspects of kinematic theory is the concept of "Cognates." The Hoekens linkage is actually a cognate linkage of the Chebyshev Straight-line Mechanism . This means that while the physical structure and link lengths differ, they can generate...

Dowel Pins & Locating Pins: The Basics of Fixture Design

Figure 1: A typical fixture setup. Notice how dowel pins (silver) provide precise location, while bolts (not shown here) provide the clamping force. In the world of Precision Engineering , the difference between a high-quality product and a scrap part often comes down to microns. While bolts hold parts together, they are terrible at positioning them. This is where Dowel Pins and Locating Pins become essential components in industrial tooling . Advertisement What is a Dowel Pin? Dowel pins are precision-ground fasteners used to secure the relative position of two parts. They are typically machined to extremely tight tolerances (often within 0.0001 inches) and are available in materials like: Hardened Steel: For high-wear applications in CNC fixtures . Stainless Steel: For corrosion resistance in medical or food processing machinery. Plastic (Thermoplastic): For lightweight, non-conductive, low-load alignment. The ...

Engineer's Guide to Ball Detent Torque Limiters

Figure 1: The ball detent mechanism provides precise overload protection by disengaging instantly when the torque limit is exceeded. The First Line of Defense: Overload Clutches In high-speed automation and heavy industrial machinery, a "jam" is not a matter of if , but when . Whether it is a cardboard box getting stuck in a packaging machine or a tool crashing in a CNC lathe, the resulting torque spike can destroy gearboxes, twist shafts, and burn out expensive servo motors in milliseconds. A torque limiter (or overload clutch) is the mechanical fuse of the drive system. While electronic monitoring (current limiting) is common, it is often too slow to prevent physical damage from the massive kinetic energy stored in the system inertia. A mechanical torque limiter provides a physical disconnect that operates in a fraction of a second. Search for Torque Limiters & Safety Couplings Advertisement Why Choose ...