Skip to main content

Featured Post

The Ultimate Guide to Industrial V-Belt Drives: Selection & Tensioning

The Ultimate Guide to Industrial V-Belt Drives: Selection & Tensioning Figure 1: Not all black rubber bands are the same. Choosing the wrong profile is the #1 cause of slip. If you walk into a plant and hear a high-pitched "chirp" or smell burning rubber, you are witnessing wasted money. The industrial V-belt drive is the most common power transmission method, yet it is often the most misunderstood. Engineers often specify "A-Section" belts out of habit, ignoring modern, high-efficiency options. This guide covers Profile Selection , Length Calculation (with VBA) , and the critical belt tensioning method to eliminate belt squeal and premature failure. 1. The "Wedge" Effect: How it Works A flat belt relies purely on friction. A V-Belt relies on the Wedge Effect . As tension pulls the belt into the sheave groove, the side walls push outward, multiplying the normal force. Critical Rule: The belt should NEVE...
Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Numerical Methods - The Newton-Raphson Method to Solve Mechanical Design Problems Part I

Machine designers have to deal with several equations in their design projects. There are a number of ways to solve for roots of algebraic and transcendental equations. Sometimes, the roots could be obtained by direct methods. However, there are many more that could not.

The classical equation such as f(x) = e-x - x cannot be solved analytically. For this case, the only alternative is an approximate solution technique.

There are several methods available to solve the root finding problem, generally categorized as "Bracketing methods" and "Open methods".

1. Bracketing Methods

The bracketing methods require two initial guesses for the root. These guesses must "bracket" the root (one positive, one negative relative to the root). The numerical methods using bracketing methods consist of the following techniques:

  • The Bisection Method: The idea of this technique is an incremental search related to the sign change. Sometimes, this technique is called binary chopping, or Bolzano's method.
  • The False-Position Method: It's the improved technique from the bisection methods. It replaces the curve f(x) by a straight line and gives a false-position of the root. The false-position method is also called the linear interpolation method.

2. Open Methods

However, my favorite technique in root finding is not the bracketing methods but the open methods.

The bracketing methods are said to be convergent (they always find the root). In contrast, the open methods are based on formulas that require a single starting value of x. They sometimes diverge (fail to find the root). However, when the open methods converge, they usually do so much more quickly than the bracketing methods.

The following are the root finding techniques using open methods:

  • Simple One-Point Iteration
  • The Newton-Raphson Method: The most widely used of all root-locating formulas. The Newton-Raphson method uses the slope (first derivative) of the function to find the root. It's my favorite one because of its speed.
  • The Secant Method: Instead of using the first derivative of the function to find the slope as in The Newton-Raphson Method, the first derivative in the secant method can be approximated by a finite divided difference.

In the next post, let's see how we can use Microsoft Excel VBA again to solve the root finding problems using the Newton-Raphson Method. I'll show you the simple VBA code that you can copy & paste into your excel file and use it as the module to calculate for the root of your equation.

Comments

Popular posts from this blog

Hoekens Linkage: Kinematics, Optimization, and Walking Robot Applications

Introduction to the Hoekens Linkage The Hoekens linkage is a specialized four-bar mechanism designed to convert rotational motion into an approximate straight-line motion. While it serves a similar purpose to other straight-line generators, its unique coupler curve—a "tear-drop" shape—makes it exceptionally useful for intermittent motion and walking machines. One of the most fascinating aspects of kinematic theory is the concept of "Cognates." The Hoekens linkage is actually a cognate linkage of the Chebyshev Straight-line Mechanism . This means that while the physical structure and link lengths differ, they can generate the exact same coupler curve geometry. Search for "Design of Machinery" Books Kinematics and Optimization Unlike the Watt linkage, which has a central pivot, the Hoekens linkage relies on a rotating crank to drive a floating coupler arm. The "straight" portion of the curve occurs when t...

The Engineer’s Guide to Precision Alignment: Dowel Pins, Diamond Pins & Fits

The Unsung Heroes of Precision: Dowel Pins & Locators In the world of Precision Engineering , the difference between a high-quality product and a scrap part often comes down to microns. While bolts hold parts together, they are terrible at positioning them. This is where Dowel Pins and Locating Pins become essential components in industrial tooling . What is a Dowel Pin? Dowel pins are precision-ground fasteners used to secure the relative position of two parts. They are typically machined to extremely tight tolerances (often within 0.0001 inches) and are available in materials like: Hardened Steel: For high-wear applications in CNC fixtures . Stainless Steel: For corrosion resistance in medical or food processing machinery. Plastic (Thermoplastic): For lightweight, non-conductive, low-load alignment. The "Play" Problem: Bolts vs. Dowels When mechanical design engineers create components, they cannot rely on bolts for alignm...

Ball Detent Torque Limiter: The Ultimate Guide to Precision Overload Protection

The First Line of Defense: Overload Clutches In high-speed automation and heavy industrial machinery, a "jam" is not a matter of if , but when . Whether it is a cardboard box getting stuck in a packaging machine or a tool crashing in a CNC lathe, the resulting torque spike can destroy gearboxes, twist shafts, and burn out expensive servo motors in milliseconds. A torque limiter (or overload clutch) is the mechanical fuse of the drive system. While electronic monitoring (current limiting) is common, it is often too slow to prevent physical damage from the massive kinetic energy stored in the system inertia. A mechanical torque limiter provides a physical disconnect that operates in a fraction of a second. Search for Torque Limiters & Safety Couplings Why Choose a Ball Detent Limiter? Not all torque limiters are created equal. In precision applications, the Ball Detent type is superior to friction or shear types for several reason...