Skip to main content

Featured Post

Servo vs. Stepper Motors: The Engineer's Guide

Figure 1: Visual comparison . Steppers (Left) are dense and simple. Servos (Right) are longer and include a visible feedback encoder housing on the rear. The Million Dollar Question: "Which Motor Do I Need?" If you are designing a CNC machine, a packaging robot, or a conveyor system, you face the same dilemma every time: Stepper or Servo? Make the wrong choice, and you face two disasters: The Stepper Trap: Your machine "loses steps" (positional error) without knowing it, scrapping parts. The Servo Trap: You spend $5,000 on a system that could have been done for $500, blowing your budget. This guide bridges the gap between mechanical requirements and electrical reality. 1. The Stepper Motor: The "Digital Ratchet" Think of a Stepper Motor like a very strong, magnetic ratchet. It divides a full rotation into equal steps (typically 200 steps per revolution, or 1.8°). Pros: Incredible Holding Torque: Ste...
Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Tool Steels

Tool Steels

As the designation implies, tool steels serve primarily for making tools used in manufacturing and in the trades for the working and forming of metals, wood, plastics, and other industrial materials.

Tools must withstand high specific loads, often concentrated at exposed areas, may have to operate at elevated or rapidly changing temperatures and in continual contact with abrasive types of work materials, and are often subjected to shocks, or may have to perform under other varieties of adverse conditions. Nevertheless, when employed under circumstances that are regarded as normal operating conditions, the tool should not suffer major damage, untimely wear resulting in the dulling of the edges, or be susceptible to detrimental metallurgical changes.

Tools for less demanding uses, such as ordinary handtools, including hammers, chisels, files, mining bits, etc., are often made of standard AISI steels that are not considered as belonging to any of the tool steel categories.

Heat Treatment and Composition

The steel for most types of tools must be used in a heat-treated state, generally hardened and tempered, to provide the properties needed for the particular application. The adaptability to heat treatment with a minimum of harmful effects, which dependably results in the intended beneficial changes in material properties, is still another requirement that tool steels must satisfy.

To meet such varied requirements, steel types of different chemical composition, often produced by special metallurgical processes, have been developed. Due to the large number of tool steel types produced by the steel mills, which generally are made available with proprietary designations, it is rather difficult for the user to select those types that are most suitable for any specific application, unless the recommendations of a particular steel producer or producers are obtained.

The Properties of Tool Steels

Tool steels must possess certain properties to a higher than ordinary degree to make them adaptable for uses that require the ability to sustain heavy loads and perform dependably even under adverse conditions.

Tool and die design tips
Tool and die design tips to reduce breakage in heat treatment

The extent and the types of loads, the characteristics of the operating conditions, and the expected performance with regard to both the duration and the level of consistency are the principal considerations, in combination with the aspects of cost, that govern the selection of tool steels for specific applications.

Although it is not possible to define and apply exact parameters for measuring significant tool steel characteristics, certain properties can be determined that may greatly assist in appraising the suitability of various types of tool steels for specific uses. For detailed data, refer to the Machinery's Handbook.

Comments

Never Miss a Design Guide

Follow this series and get notified when new mechanical engineering tutorials and Excel tools are published.

Follow via RSS Feed

Add to Feedly, Inoreader, or Outlook

Popular posts from this blog

Hoeken's Linkage: Kinematics and Walking Robot Design

Figure 1: Animated simulation of the Hoeken’s Linkage showing the characteristic "tear-drop" coupler curve. 🚀 New Design Guide Available Don't just read about it—build it. Check out our new tutorial: How to Design a Hoeken’s Linkage in Excel (with Free VBA Simulator) » Introduction to the Hoekens Linkage The Hoekens linkage is a specialized four-bar mechanism designed to convert rotational motion into an approximate straight-line motion. While it serves a similar purpose to other straight-line generators, its unique coupler curve—a "tear-drop" shape—makes it exceptionally useful for intermittent motion and walking machines. One of the most fascinating aspects of kinematic theory is the concept of "Cognates." The Hoekens linkage is actually a cognate linkage of the Chebyshev Straight-line Mechanism . This means that while the physical structure and link lengths differ, they can generate...

Watt Straight-Line Linkage: Analysis and Automotive Uses

Figure 1: Kinematic diagram showing the path generated by the central point of a Watt's linkage. Introduction to Watt's Linkage The Watt's linkage (also known as the parallel motion linkage) is a cornerstone in the history of mechanical engineering. It is a type of four-bar linkage originally invented by James Watt in the late 18th century to solve a critical problem in steam engine design: constraining the piston rod to move in a straight line without using high-friction guideways. Before this invention, engines used chains to connect the piston to the beam, which meant they could only pull, not push. Watt's rigid linkage allowed for double-acting engines (pushing and pulling), doubling the power output. He was immensely proud of this kinematic solution, describing it in a 1784 letter to his partner Matthew Boulton: I have got a glimpse of a method of causing a piston rod to move up and down perpendicularly by only fixing it to a piece o...

Design Hoeken’s Linkage in Excel (with Free VBA Simulator)

Figure 1: Geometry of the Hoeken’s straight-line linkage and resulting coupler-point trajectory. The lower portion of the curve approximates straight-line motion over ~180° of crank rotation. The Hoeken’s Linkage is a mechanical engineer's favorite magic trick. It is a four-bar mechanism that converts simple rotational input into a near-perfect straight-line output. Unlike the Watt Linkage (which traces a figure-8), the Hoeken’s Linkage creates a "tear-drop" shape with a long, flat bottom (see Figure 1). This makes it the standard choice for walking robots and intermittent linear actuators. But how do you find the link lengths? If you guess, you get a wobble. This guide provides practical "Golden Ratios" and an Excel VBA tool to simulate the motion path. 1. The Geometry: Practical Design Ratios To achieve a usable straight line, link lengths must follow specific proportions relative to the Crank Radius (R) . While optim...