You selected the right AGMA Class gearbox . You calculated the belt tension perfectly. But the moment you hit "Start," the belt snaps or the gearbox makes a terrifying clunk. The culprit is likely your Starting Method . In conveyor systems, the starting torque profile matters more than steady-state power. Note: We previously discussed VFDs as Energy Savers for pumps and fans. For conveyors, however, the goal is not lowering your electric bill—it is preventing your gearbox from exploding. Table of Contents 1. The Physics of Shock Loads 2. Why Soft Starters Stall Conveyors 3. The VFD Torque Advantage 4. Comparison: Cost vs. Protection 5. Final Verdict Advertisement 1. The Physics of Shock Loads When an AC induction motor starts Direct-On-Line (DOL), it draws 600% to 800% of its rated current (Inrush Current). More importantly, it produces a sudden spike known as Locked-Rotor Torqu...
In the previous post [ 3-Position Motion Generation Four-Bar Linkage Synthesis ], the locations of the fixed ground pivots (O 2 and O 4 ) were mathematically determined by the positions of points A and B. The Problem: Sometimes, these calculated fixed pivots land in impossible locations—inside another machine part, off the machine base, or too far away. The Solution: We use Alternate Moving Pivots . Instead of using the endpoints of the line AB, we create new points (C and D) that are rigidly attached to the moving body. By adjusting the location of C and D, we can steer the fixed pivots (O 2 and O 4 ) to desirable locations. Advertisement Step 1: Define the Desired Motion Draw the coupler link AB in its three design positions: A 1 B 1 , A 2 B 2 , and A 3 B 3 . Figure 1: Defining the three target positions. Sometimes standard pivot locations are invalid or obstructed. Step 2: Define Alternate Moving Pivots (C and D) ...