Every linear motion design starts with the same choice: How do you convert rotary motor motion into linear travel? The two most common answers are the Lead Screw (simple, cheap, friction-based) and the Ball Screw (complex, expensive, rolling-based). Making the wrong choice here is costly. Use a lead screw where you need precision, and you get backlash. Use a ball screw in a vertical lift without a brake, and your load crashes to the floor. In this guide, we compare them side-by-side. Table of Contents 1. The Physics: Sliding vs. Rolling 2. Efficiency & The "Back-Driving" Danger 3. Accuracy and Backlash 4. Selection Table Advertisement 1. The Physics: Sliding vs. Rolling The fundamental difference is friction. Lead Screws rely on Sliding Friction . The nut (often bronze or plastic) slides directly against the steel screw threads. This generates heat and wear. Ball Screws re...
Selecting the right fastener is not just about size; it is about understanding the complex mechanics of the joint itself. A properly designed bolted joint acts like a rigid spring system, where the balance between bolt tension and joint compression determines safety and longevity. Advertisement JOINT DESIGN AND FASTENER SELECTION Figure 1: High-strength socket head cap screws are critical for precision joint design. Joint Length The longer the joint length (grip length), the greater the total elongation required to produce the desired clamp load. In design, a longer joint length generally decreases the potential loss of preload over time due to settling or vibration. Joint Material Stiffness If the clamped material is stiff relative to the bolt, it will compress less under load. This results in a "less sensitive" joint—one that is more resistant to preload loss from brinelling (surface indenting), relaxation, or loosening. ...