For engineers who already know the math—but still lose projects. For the last few years, I’ve been sharing technical guides here on Mechanical Design Handbook —how to size a motor, how to calculate fits, and (as you recently read) how to choose between timing belts and ball screws. But after 25 years in industrial automation, I realized something uncomfortable: Projects rarely fail because the math was wrong. They fail because: The client changed the scope three times in one week. A critical vendor lied about a shipping date (and no one verified it). The installation technician couldn’t fit a wrench into the gap we designed. University taught us the physics. It didn’t teach us the reality. That gap is why I wrote my new book, The Sheet Mechanic . This is not a textbook. It is a field manual for the messy, political, and chaotic space between the CAD model and the factory floor. It captures the systems I’ve used to survive industrial projec...
Figure 1: The Chebyshev linkage converts rotary input into approximate straight-line output. Introduction to the Chebyshev Linkage The Chebyshev linkage is a four-bar mechanical linkage that converts rotational motion into approximate straight-line motion . It was invented by the 19th-century Russian mathematician Pafnuty Chebyshev , who was deeply involved in the theoretical problems of kinematic mechanisms. His goal was to improve upon existing designs, such as the Watt Straight-line Mechanism , which James Watt had used to revolutionize the steam engine. While Watt's design produces a lemniscate (figure-eight) curve with a straight section, the Chebyshev linkage is often preferred in specific machinery because the straight-line portion of the path is parallel to the line connecting the two fixed ground pivots. Search for Mechanism Design & Robotics Books Advertisement Design Ratios and Geometry The gen...