Skip to main content

Posts

Showing posts from December, 2010

Featured Post

Why I Wrote The Sheet Mechanic (And Why Calculations Aren’t Enough)

For engineers who already know the math—but still lose projects. For the last few years, I’ve been sharing technical guides here on Mechanical Design Handbook —how to size a motor, how to calculate fits, and (as you recently read) how to choose between timing belts and ball screws. But after 25 years in industrial automation, I realized something uncomfortable: Projects rarely fail because the math was wrong. They fail because: The client changed the scope three times in one week. A critical vendor lied about a shipping date (and no one verified it). The installation technician couldn’t fit a wrench into the gap we designed. University taught us the physics. It didn’t teach us the reality. That gap is why I wrote my new book, The Sheet Mechanic . This is not a textbook. It is a field manual for the messy, political, and chaotic space between the CAD model and the factory floor. It captures the systems I’ve used to survive industrial projec...
NEW RELEASE: Stop trying to be a Hero. Start being a Mechanic. Get "The Sheet Mechanic" on Amazon »

Chebyshev Linkage Design: Ratios & Straight-Line Motion

Figure 1: The Chebyshev linkage converts rotary input into approximate straight-line output. Introduction to the Chebyshev Linkage The Chebyshev linkage is a four-bar mechanical linkage that converts rotational motion into approximate straight-line motion . It was invented by the 19th-century Russian mathematician Pafnuty Chebyshev , who was deeply involved in the theoretical problems of kinematic mechanisms. His goal was to improve upon existing designs, such as the Watt Straight-line Mechanism , which James Watt had used to revolutionize the steam engine. While Watt's design produces a lemniscate (figure-eight) curve with a straight section, the Chebyshev linkage is often preferred in specific machinery because the straight-line portion of the path is parallel to the line connecting the two fixed ground pivots. Search for Mechanism Design & Robotics Books Advertisement Design Ratios and Geometry The gen...

Watt Straight-Line Linkage: Analysis and Automotive Uses

Figure 1: Watt's linkage example geometry and path generation. Introduction to Watt's Linkage The Watt's linkage (also known as the parallel motion linkage) is a cornerstone in the history of mechanical engineering. It is a type of four-bar linkage originally invented by James Watt in the late 18th century to solve a critical problem in steam engine design: constraining the piston rod to move in a straight line without using high-friction guideways. Before this invention, engines used chains to connect the piston to the beam, which meant they could only pull, not push. Watt's rigid linkage allowed for double-acting engines (pushing and pulling), doubling the power output. He was immensely proud of this kinematic solution, describing it in a 1784 letter to his partner Matthew Boulton: "I have got a glimpse of a method of causing a piston rod to move up and down perpendicularly by only fixing it to a piece of iron u...
Disclosure: As an Amazon Associate, I earn from qualifying purchases.