Skip to main content

Disclosure: As an Amazon Associate, I earn from qualifying purchases.

About Mechanical Design Handbook

About Mechanical Design Handbook

Mechanical Design Handbook is a technical blog focused on practical mechanical engineering design and calculation methods.

The purpose of this site is to provide clear, step-by-step explanations of commonly used engineering calculations, with an emphasis on real-world industrial applications rather than purely theoretical treatment.


Topics Covered

  • Belt conveyor motor power and torque calculations
  • Starting torque and acceleration analysis
  • Machine and mechanism design fundamentals
  • Engineering automation using Excel and VBA
  • Practical numerical examples for design reference

Who This Site Is For

This site is intended for mechanical engineers, design engineers, automation engineers, engineering students, and anyone interested in applied mechanical design.


Disclaimer

All content on Mechanical Design Handbook is provided for educational and informational purposes only. While care is taken to ensure accuracy, the information should always be verified against applicable standards, codes, and professional engineering practices before use.

Comments

Popular posts from this blog

Dowel Pins and Locating Pins

Dowel pins are the fasteners used to secure two parts together. They are available in both Metric and English sizes, and carry specifications such as diameter, length, and materials. Most dowel pins are made of stainless steel, plastic, , hardened steel, or ground steel. Plastic dowel pins are made of thermoplastic or thermosetting polymers with high molecular weight. Stainless dowel pins are chemical and corrosion resistant, and have relatively high pressure ratings. Dowel pins are often used as precise locating devices in machinery. Stainless dowel pins are machined to tight tolerances, as are the corresponding holes, which are typically reamed. A dowel pin may have a larger diameter so that it must be pressed into its hole or a smaller diameter than its hole so that it freely slips in. When mechanical design engineers design the mechanical components, typically they use dowel holes as reference points to control positioning variations and attain repeatable assembly quality. If...

Hoekens Straight-line Mechanism

The Hoekens linkage is a four-bar mechanism that converts rotational motion to approximate straight-line motion. The Hoekens linkage is a cognate linkage of the Chebyshev linkage . " DESIGN OF MACHINERY " by Robert L. Norton shows the link ratios that give the smallest possible structural error in either position or velocity over values of Δβ from 20° to 180°. The followings are some interesting examples of Hoekens straight-line mechanism from youtube. Walking robot Marble machine Source: http://www.designofmachinery.com/DOM/Chap_03_3ed_p134.pdf http://en.wikipedia.org/wiki/Hoekens_linkage http://www.youtube.com/watch?v=AkI1nrq9mMQ http://www.youtube.com/watch?v=-CKgP_cueEw http://www.youtube.com/watch?v=PxpRUpmRdCY  

Ball Detent Torque Limiter: Overload Clutch

A torque limiter is an automatic overload clutch that provides machine protection and reduces repair time during jamming load conditions. This is done to protect expensive machines and prevent physical injuries. A torque limiter may limit the torque by slipping (as in a friction plate slip-clutch), or uncouple the load entirely (as in a shear pin). Ideally the torque limiter should be placed as close as possible to the source of the jam. This will allow the system inertia and torque to be quickly and effectively disconnected from the jammed section. The system can then be allowed to stop without causing further machine damage. A mechanical torque limiter will provide faster response times and better protection than typical electronic methods at high crash rates. There are several disconnect types available, but we will focus at the Ball Detent type . A ball detent type torque limiter transmits force through hardened balls which rest in detents on the shaft and are held in pl...