Skip to main content

Featured Post

Why I Wrote The Sheet Mechanic (And Why Calculations Aren’t Enough)

For engineers who already know the math—but still lose projects. For the last few years, I’ve been sharing technical guides here on Mechanical Design Handbook —how to size a motor, how to calculate fits, and (as you recently read) how to choose between timing belts and ball screws. But after 25 years in industrial automation, I realized something uncomfortable: Projects rarely fail because the math was wrong. They fail because: The client changed the scope three times in one week. A critical vendor lied about a shipping date (and no one verified it). The installation technician couldn’t fit a wrench into the gap we designed. University taught us the physics. It didn’t teach us the reality. That gap is why I wrote my new book, The Sheet Mechanic . This is not a textbook. It is a field manual for the messy, political, and chaotic space between the CAD model and the factory floor. It captures the systems I’ve used to survive industrial projec...
NEW RELEASE: Stop trying to be a Hero. Start being a Mechanic. Get "The Sheet Mechanic" on Amazon »

Privacy Policy

Privacy Policy for Mechanical Design Handbook

At Mechanical Design Handbook, accessible from https://mechanical-design-handbook.blogspot.com/, one of our main priorities is the privacy of our visitors. This Privacy Policy document contains types of information that is collected and recorded by Mechanical Design Handbook and how we use it.

If you have additional questions or require more information about our Privacy Policy, do not hesitate to contact us.

This Privacy Policy applies only to our online activities and is valid for visitors to our website with regards to the information that they shared and/or collect in Mechanical Design Handbook. This policy is not applicable to any information collected offline or via channels other than this website.


Consent

By using our website, you hereby consent to our Privacy Policy and agree to its terms.


Information we collect

The personal information that you are asked to provide, and the reasons why you are asked to provide it, will be made clear to you at the point we ask you to provide your personal information.

If you contact us directly, we may receive additional information about you such as your name, email address, phone number, the contents of the message and/or attachments you may send us, and any other information you may choose to provide.


Log Files

Mechanical Design Handbook follows a standard procedure of using log files. These files log visitors when they visit websites. All hosting companies do this and a part of hosting services' analytics. The information collected by log files include internet protocol (IP) addresses, browser type, Internet Service Provider (ISP), date and time stamp, referring/exit pages, and possibly the number of clicks. These are not linked to any information that is personally identifiable. The purpose of the information is for analyzing trends, administering the site, tracking users' movement on the website, and gathering demographic information.


Cookies and Web Beacons

Like any other website, Mechanical Design Handbook uses 'cookies'. These cookies are used to store information including visitors' preferences, and the pages on the website that the visitor accessed or visited. The information is used to optimize the users' experience by customizing our web page content based on visitors' browser type and/or other information.


Google DoubleClick DART Cookie

Google is one of a third-party vendor on our site. It also uses cookies, known as DART cookies, to serve ads to our site visitors based upon their visit to www.website.com and other sites on the internet. However, visitors may choose to decline the use of DART cookies by visiting the Google ad and content network Privacy Policy at the following URL – https://policies.google.com/technologies/ads


Our Advertising Partners

Some of advertisers on our site may use cookies and web beacons. Our advertising partners are listed below. Each of our advertising partners has their own Privacy Policy for their policies on user data. For easier access, we hyperlinked to their Privacy Policies below.


Third Party Privacy Policies

Mechanical Design Handbook's Privacy Policy does not apply to other advertisers or websites. Thus, we are advising you to consult the respective Privacy Policies of these third-party ad servers for more detailed information. It may include their practices and instructions about how to opt-out of certain options.

You can choose to disable cookies through your individual browser options. To know more detailed information about cookie management with specific web browsers, it can be found at the browsers' respective websites.


CCPA Privacy Rights (Do Not Sell My Personal Information)

Under the CCPA, among other rights, California consumers have the right to:

  • Request that a business that collects a consumer's personal data disclose the categories and specific pieces of personal data that a business has collected about consumers.
  • Request that a business delete any personal data about the consumer that a business has collected.
  • Request that a business that sells a consumer's personal data, not sell the consumer's personal data.

If you make a request, we have one month to respond to you. If you would like to exercise any of these rights, please contact us.


GDPR Data Protection Rights

We would like to make sure you are fully aware of all of your data protection rights. Every user is entitled to the following:

  • The right to access – You have the right to request copies of your personal data. You have the right to request copies of your personal data. We do not charge a fee for providing this information.
  • The right to rectification – You have the right to request that we correct any information you believe is inaccurate. You also have the right to request that we complete the information you believe is incomplete.
  • The right to erasure – You have the right to request that we erase your personal data, under certain conditions.
  • The right to restrict processing – You have the right to request that we restrict the processing of your personal data, under certain conditions.
  • The right to object to processing – You have the right to object to our processing of your personal data, under certain conditions.
  • The right to data portability – You have the right to request that we transfer the data that we have collected to another organization, or directly to you, under certain conditions.

If you make a request, we have one month to respond to you. If you would like to exercise any of these rights, please contact us.

If you need to contact us regarding this Privacy Policy, please use the contact form available on this website.


Children's Information

Another part of our priority is adding protection for children while using the internet. We encourage parents and guardians to observe, participate in, and/or monitor and guide their online activity.

Mechanical Design Handbook publishes technical and educational content related to mechanical engineering. The information provided is for educational purposes only and does not constitute professional engineering advice.

Mechanical Design Handbook does not knowingly collect any Personal Identifiable Information from children under the age of 13. If you think that your child provided this kind of information on our website, we strongly encourage you to contact us immediately and we will do our best efforts to promptly remove such information from our records.

Comments

Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Popular posts from this blog

Dowel Pins & Locating Pins: The Basics of Fixture Design

Figure 1: A typical fixture setup. Notice how dowel pins (silver) provide precise location, while bolts (not shown here) provide the clamping force. In the world of Precision Engineering , the difference between a high-quality product and a scrap part often comes down to microns. While bolts hold parts together, they are terrible at positioning them. This is where Dowel Pins and Locating Pins become essential components in industrial tooling . Advertisement What is a Dowel Pin? Dowel pins are precision-ground fasteners used to secure the relative position of two parts. They are typically machined to extremely tight tolerances (often within 0.0001 inches) and are available in materials like: Hardened Steel: For high-wear applications in CNC fixtures . Stainless Steel: For corrosion resistance in medical or food processing machinery. Plastic (Thermoplastic): For lightweight, non-conductive, low-load alignment. The ...

Engineer's Guide to Ball Detent Torque Limiters

Figure 1: The ball detent mechanism provides precise overload protection by disengaging instantly when the torque limit is exceeded. The First Line of Defense: Overload Clutches In high-speed automation and heavy industrial machinery, a "jam" is not a matter of if , but when . Whether it is a cardboard box getting stuck in a packaging machine or a tool crashing in a CNC lathe, the resulting torque spike can destroy gearboxes, twist shafts, and burn out expensive servo motors in milliseconds. A torque limiter (or overload clutch) is the mechanical fuse of the drive system. While electronic monitoring (current limiting) is common, it is often too slow to prevent physical damage from the massive kinetic energy stored in the system inertia. A mechanical torque limiter provides a physical disconnect that operates in a fraction of a second. Search for Torque Limiters & Safety Couplings Advertisement Why Choose ...

Cam Design Essentials: Kinematics, Pressure Angles, and CNC

Mechanical cams remain the "heart of automation," providing precise timing and motion control in high-speed machinery. Understanding the geometry and dynamics of these systems is essential for modern machine design. Advertisement Classes of Cams Cams may, in general, be divided into two classes: uniform motion cams and accelerated motion cams. The uniform motion cam moves the follower at the same rate of speed from the beginning to the end of the stroke. However, as the movement starts from zero to full speed instantly and stops in the same abrupt way, there is a distinct shock at the beginning and end of the stroke if the movement is at all rapid. In machinery working at a high rate of speed, therefore, it is important that cams are so constructed that sudden shocks are avoided when starting the motion or when reversing the direction of motion of the follower. The uniformly accelerated motion cam is suitable for moderate speeds, but it ha...