Improve math skills of your kids - Learn step-by-step arithmetic from Math games

Math: Unknown - Step-by-step math calculation game for iOS.


Math: Unknown is much more than a math game. It is a step-by-step math calculation game which will teach users how to calculate in the correct order rather than just asking only the final calculated results.

The app consists of four basic arithmetic operations which are addition, subtraction, multiplication and division. In order to get started, users who are new to arithmetic can learn from animated calculation guides showing step-by-step procedures of solving each type of operation. It is also helpful for experienced users as a quick reference.

Generally, addition and subtraction may be difficult for users who just start learning math especially when questions require carrying or borrowing (also called regrouping). The app helps users to visualize the process of carrying and borrowing in the way it will be done on paper. Once users understand how these operations work, they are ready to learn multiplication and division.

For most students, division is considered as the most difficult arithmetic operation to solve. It is a common area of struggle since it requires prior knowledge of both multiplication and subtraction. To help users understand division, the app uses long division to teach all calculation procedures. Relevant multiplication table will be shown beside the question. Users will have to pick a number from the table which go into the dividend. Multiplication of selected number and divisor is automatically calculated, but the users have to do subtraction and drop down the next digit themselves. Learning whole calculation processes will make them master it in no time.

Math: Unknown is a helpful app for students who seriously want to improve arithmetic calculation skills.

Perpetual motion


Interesting articles from Wikipedia and other web sites...

From Wikipedia.org
Perpetual motion describes "motion that continues indefinitely without any external source of energy; impossible in practice because of friction." It can also be described as "the motion of a hypothetical machine which, once activated, would run forever unless subject to an external force or to wear". There is a scientific consensus that perpetual motion in an isolated system would violate the first and/or second law of thermodynamics.

Despite the fact that successful isolated system perpetual motion devices are physically impossible in terms of the current understanding of the laws of physics, the pursuit of perpetual motion remains popular.

There is a scientific consensus that perpetual motion in an isolated system violates either the first law of thermodynamics, the second law of thermodynamics, or both. The first law of thermodynamics is essentially a statement of conservation of energy. The second law can be phrased in several different ways, the most intuitive of which is that heat flows spontaneously from hotter to colder places; the most well known statement is that entropy tends to increase, or at the least stay the same; another statement is that no heat engine (an engine which produces work while moving heat from a high temperature to a low temperature) can be more efficient than a Carnot heat engine.

In other words:
  1. In any isolated system, one cannot create new energy (first law of thermodynamics)
  2. The output power of heat engines is always smaller than the input heating power. The rest of the energy is removed as heat at ambient temperature. The efficiency (this is the produced power divided by the input heating power) has a maximum, given by the Carnot efficiency. It is always lower than one
  3. The efficiency of real heat engines is even lower than the Carnot efficiency due to irreversible processes.
The statements 2 and 3 only apply to heat engines. Other types of engines, which convert e.g. mechanical into electromagnetic energy, can, in principle, operate with 100% efficiency.

From Youtube: Some interesting experiments about perpetual motion.











Please, be advised:
These Videos are of motorized versions that were built to illustrate how these machines were supposed to work in the minds of Inventors.

Other interesting resources:

Comments

Popular posts from this blog

Ball Detent Torque Limiter: Overload Clutch

Dowel Pins and Locating Pins

Hoekens Straight-line Mechanism