You selected the right AGMA Class gearbox . You calculated the belt tension perfectly. But the moment you hit "Start," the belt snaps or the gearbox makes a terrifying clunk. The culprit is likely your Starting Method . In conveyor systems, the starting torque profile matters more than steady-state power. Note: We previously discussed VFDs as Energy Savers for pumps and fans. For conveyors, however, the goal is not lowering your electric bill—it is preventing your gearbox from exploding. Table of Contents 1. The Physics of Shock Loads 2. Why Soft Starters Stall Conveyors 3. The VFD Torque Advantage 4. Comparison: Cost vs. Protection 5. Final Verdict Advertisement 1. The Physics of Shock Loads When an AC induction motor starts Direct-On-Line (DOL), it draws 600% to 800% of its rated current (Inrush Current). More importantly, it produces a sudden spike known as Locked-Rotor Torqu...
The German engineer Otto Mohr (1835-1918) developed a useful pictorial interpretation of the equations for finding principal stresses and maximum shearing stress at a point in a stressed member. Advertisement This method, commonly called Mohr's Circle , involves constructing a circle where the coordinates of each point represent the normal and shearing stresses on a specific plane. The angular position of the radius gives the orientation of that plane. Understanding the Plot Figure 1: The geometric relationship between Normal Stress (σ) and Shear Stress (τ). Coordinate Rules: Normal Stresses (σ): Plotted on the horizontal axis. Tensile (+) is right; Compressive (-) is left. Shearing Stresses (τ): Plotted on the vertical axis. Clockwise rotation is above the axis; Counter-clockwise is below. The results obtained from Mohr's circle are identical to the equations derived from the free-body diagram. ...