For engineers who already know the math—but still lose projects. For the last few years, I’ve been sharing technical guides here on Mechanical Design Handbook —how to size a motor, how to calculate fits, and (as you recently read) how to choose between timing belts and ball screws. But after 25 years in industrial automation, I realized something uncomfortable: Projects rarely fail because the math was wrong. They fail because: The client changed the scope three times in one week. A critical vendor lied about a shipping date (and no one verified it). The installation technician couldn’t fit a wrench into the gap we designed. University taught us the physics. It didn’t teach us the reality. That gap is why I wrote my new book, The Sheet Mechanic . This is not a textbook. It is a field manual for the messy, political, and chaotic space between the CAD model and the factory floor. It captures the systems I’ve used to survive industrial projec...
In the world of mechanical energy and industrial automation, the method of converting electricity into motion is critical. While standard AC/DC motors dominate the market, two specialized types— Stepper Motors and Linear Induction Motors —are the unsung heroes of precision control and high-speed transport. For engineers designing CNC machines or industrial conveyor systems , understanding the distinction between these drives is essential to avoiding costly equipment repairs and minimizing downtime. Advertisement Figure 1: Conceptual 3D render of Rotary precision (Stepper) versus high-speed linear thrust (Linear Induction). 1. Linear Induction Motors (LIM) A Linear Induction Motor is often described by experts as a "rotating squirrel cage" induction motor that has been sliced open and rolled flat. [Image of linear induction motor working principle] Instead of producing rotary torque from a cylindrical machine, it produces...