Skip to main content

Featured Post

Why I Wrote The Sheet Mechanic (And Why Calculations Aren’t Enough)

For engineers who already know the math—but still lose projects. For the last few years, I’ve been sharing technical guides here on Mechanical Design Handbook —how to size a motor, how to calculate fits, and (as you recently read) how to choose between timing belts and ball screws. But after 25 years in industrial automation, I realized something uncomfortable: Projects rarely fail because the math was wrong. They fail because: The client changed the scope three times in one week. A critical vendor lied about a shipping date (and no one verified it). The installation technician couldn’t fit a wrench into the gap we designed. University taught us the physics. It didn’t teach us the reality. That gap is why I wrote my new book, The Sheet Mechanic . This is not a textbook. It is a field manual for the messy, political, and chaotic space between the CAD model and the factory floor. It captures the systems I’ve used to survive industrial projec...
NEW RELEASE: Stop trying to be a Hero. Start being a Mechanic. Get "The Sheet Mechanic" on Amazon »
Disclosure: As an Amazon Associate, I earn from qualifying purchases.

Gauss Elimination: Mathematical Derivation (Part 2)


Figure 1: Visualizing the matrix transformation process.

Deep Dive into the Algorithm

In the previous post (Part 1), we introduced the basic concept and Excel VBA code for the Gauss Elimination Method. In this post, we will look under the hood at the mathematical derivation that makes this algorithm work.

Understanding these steps is critical for engineers who want to write their own solvers or understand why simulation software sometimes fails (e.g., division by zero errors).

Advertisement

Phase 1: Forward Elimination

Why do we call it "Elimination"? Because our goal is to systematically remove variables from equations until we are left with a solvable state.

Let's consider the general form of a system of linear equations:

Step 1: Normalization

The algorithm starts by normalizing the first equation. We divide the entire Equation (1) by the coefficient of x1 (which is a11). This prepares it for the elimination step.

Step 2: Elimination

Next, we multiply this normalized equation by the leading coefficient of the second equation (a21). This makes the x1 terms in both equations identical.

By subtracting Equation (2) from this new equation, the x1 term vanishes. We are left with a modified equation:

Mathematically, we simplify the notation using primes (') to indicate modified coefficients. This gives us the standard eliminated form:

Step 3: The Upper Triangular Matrix

We repeat this procedure for all remaining rows (n rows). For the next round, we move to the second column, using a'22 as the pivot to eliminate terms below it. Eventually, we achieve an Upper Triangular System:

At the final stage (n-1 rounds of elimination), the system looks like this. Note that the last equation now has only one variable (xn), which is easily solvable.

Phase 2: Backward Substitution

Now we simply climb back up the ladder. First, we compute the value of the last variable xn:

Once xn is known, we plug it into the previous equation to find xn-1. The general formula for finding any variable xi is:

Advertisement

Computational Complexity

For engineers dealing with massive matrices (like in 3D FEA meshes), speed matters. The computational cost of Gauss Elimination is approximately O(n3).

  • For a small 3x3 matrix, this is negligible.
  • For a 10,000 x 10,000 matrix (common in thermal analysis), the calculation becomes heavy, which is why optimized variations like LU Decomposition are often used in commercial software.

What if the Pivot is Zero?

A major limitation of the basic algorithm shown above is the "Division by Zero" error. If a11 or any pivot element is zero, the code will crash.

To solve this, we must use a technique called Partial Pivoting. We will cover this critical improvement in the next post.

Next Part

Continue to Part 3 where we discuss limitations and improvements:
Solving System of Equations using Gauss Elimination Method (Part 3)

References

Comments

Popular posts from this blog

Hoeken's Linkage: Kinematics and Walking Robot Design

Figure 1: Animated simulation of the Hoeken’s Linkage showing the characteristic "tear-drop" coupler curve. 🚀 New Design Guide Available Don't just read about it—build it. Check out our new tutorial: How to Design a Hoeken’s Linkage in Excel (with Free VBA Simulator) » Introduction to the Hoekens Linkage The Hoekens linkage is a specialized four-bar mechanism designed to convert rotational motion into an approximate straight-line motion. While it serves a similar purpose to other straight-line generators, its unique coupler curve—a "tear-drop" shape—makes it exceptionally useful for intermittent motion and walking machines. One of the most fascinating aspects of kinematic theory is the concept of "Cognates." The Hoekens linkage is actually a cognate linkage of the Chebyshev Straight-line Mechanism . This means that while the physical structure and link lengths differ, they can generate...

Dowel Pins & Locating Pins: The Basics of Fixture Design

Dowel pins are precision cylindrical pins used for accurate part alignment in assemblies. They control position, not clamping force. This guide explains tolerances, fits, sizing rules, and design best practices. Figure 1: A typical fixture setup. Notice how dowel pins (silver) provide precise location, while bolts (not shown here) provide the clamping force. In the world of Precision Engineering , the difference between a high-quality product and a scrap part often comes down to microns. While bolts hold parts together, they are terrible at positioning them. This is where Dowel Pins and Locating Pins become essential components in industrial tooling . Advertisement What is a Dowel Pin? Dowel pins are precision-ground fasteners used to secure the relative position of two parts. They are typically machined to extremely tight tolerances (often within 0.0001 inches) and are available in materials like: Hardened Steel: For high-wea...

Ball Detent Torque Limiter – Working Principle & Selection

Figure 1: The ball detent mechanism provides precise overload protection by disengaging instantly when the torque limit is exceeded. The First Line of Defense: Overload Clutches In high-speed automation and heavy industrial machinery, a "jam" is not a matter of if , but when . Whether it is a cardboard box getting stuck in a packaging machine or a tool crashing in a CNC lathe, the resulting torque spike can destroy gearboxes, twist shafts, and burn out expensive servo motors in milliseconds. A torque limiter (or overload clutch) is the mechanical fuse of the drive system. While electronic monitoring (current limiting) is common, it is often too slow to prevent physical damage from the massive kinetic energy stored in the system inertia. A mechanical torque limiter provides a physical disconnect that operates in a fraction of a second. Search for Torque Limiters & Safety Couplings Advertisement Why Choose ...