Designing a conveyor system involves more than just bolting a motor to a frame. If you undersize the motor, it won't start under load due to breakaway torque . If you oversize it, you waste thousands on electricity and oversized VFDs. In this guide, we will walk through the engineering math required to size a conveyor motor and gearbox correctly, specifically focusing on the critical "Dynamic Tension" resulting from inertia. Table of Contents 1. The Physics: Effective Pull (Te) 2. Calculating Motor Power (Worked Example) 3. The Inertia Problem: VFD vs DOL 4. Gearbox Ratio Selection 5. Frequently Asked Questions Advertisement 1. The Physics: Effective Pull (Te) The first step in any sizing calculation is determining the Effective Pull ( T e ) . This is the sum of all forces resisting the motion of the belt. The Basic Formula: T e = F friction + F gravity + F material...
In post [ Part 1 - No Overlap Movement ] , we established the core design requirement: The die must work synchronously with the indexing mill. Advertisement Figure 1: The physical system requires precise synchronization. The Problem: Rigid Sequencing Without detailed calculation, inexperienced designers often end up with a rigid timing diagram. The die waits for the indexing to completely finish before moving. The Consequence: This compressed movement window results in extremely high acceleration ( 4.15 m/s² ). This leads to massive inertial forces, vibration, and premature equipment failure . The Solution: Optimized Overlap In post [ Part 3 - Cycloid Cam Profile Analysis ] , we utilized the "Soft Start" properties of the Cycloid profile. By allowing the motions to overlap safely, we extended the indexing angle significantly without causing collisions. The Engineering Impact: ...